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Introduction

» R?is often quoted as a measure of goodness of fit, typically as
the proportion of variance in the dependent variable that is
explained by the model

» Itis natural to ask how R? changes when adding random effects
or spatially correlated residuals

» Current packages don’t provide an R? statistic for an estimated
mixed model

(Desirable) properties of R?

Kvélseth (1985, Am. Statistician 39, 279-285) proposed the following
requirements for R?

» 1. R? must possess utility as a measure of goodness of fit and
have an intuitively reasonable interpretation

2. R? ought to be dimensionless

\4

3.0 < R? <1, where R? = 1 corresponds to perfect fit, and
R? > 0 for any reasonable model specification

\4

4. Applicable to (a) any type of model, (b) whether effects are
fixed or random, and (c) regardless of the statistical properties of
the model variables

» 5. R2 should not be confined to any specific model-fitting
technique

\4
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(Desirable) properties of R?

» 6. Values for different models fit to the same data set are directly
comparable

» 7. Generally compatible with other acceptable measures of fit
» 8. Positive and negative residuals weighted equally

(Desirable) properties of R?

Under the usual regression model, various definitions yield the same
numeric result, e.g.,
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Squared multiple correlation coefficient between the regressand
and the regressors
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Squared correlation coefficient between y and 3

Different definitions of R? may yield different quantities when the
usual regression model is generalized

v

(Desirable) properties of R?

Cameron and Windmeijer (1996, JBES 14, 209-220), to extend the
definition to count data, suggest

» .0<R?2<1
» 2. R? does not decrease as regressors are added

» 3. R? based on residual SS coincides with R? based on explained
SS

» 4. There is a correspondence between R2 and a significance test
on all slope parameters and between changes in R? as
regressors are added and significance tests

» 5. R? has an interpretation in terms of information content of the
data

Philosophies for extension into mixed
models

Philosophy 1: R? is a measure of between variable effects and should
be free of contamination of within variable effects (e.g., autocorrelation
due to repeated measures or geographic proximity), otherwise part of
the variance of y is explainable by its own past or its neighbors.

Pierce (1979, JASA 74: 901-910) suggests the following form:

R: = (0}, — 02, )75, where y, denotes past or neighboring .
This is similar to the expression for R?, (o} —07,,)/0;, except that we
are now also conditioning on ...
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Philosophies for extension into mixed
models

Philosophy 2: How much better than the mean is a model that predicts
y when conditioned on the set of x variables and on past and
neighboring values of y?

Magee (1990, Am. Statistician 44: 250-253) suggests developing

general R? measures based on Wald and likelihood ratio test statistics.

Wald R?

Wald test: Buse (1973, Am. Statistician 27: 106—108) modifies R? as
1_ a'V-la _

Y -Y)YVvi(y -Y)
correlated residuals), V' is the variance-covariance matrix of the
residuals, and Y = 71.

where s =Y — Y (i.e. the spatially

The inverse of V' “undoes” the correlation between residuals.

One problem, we don’t have V', we only have an estimate of it, and it
may not be a very good estimate.

A second problem is that software packages don’t have this expression
pre-programmed, to calculate this R? would require some work.

Log-likelihood function for a two panm.

model (mean and variance)

100 normally distributed samples were generated (1 = 0.5, 02 = 0.025)
and the log-likelihood function plotted for /i = [0, 1] and 62 = [0.05, 2]

Log likelihood R?

Likelihood ratio: 17 , = 1 — exp(—2 (logL,, — logLy)), where n is the
number of observations, logL,, is the log-likelihood of the model of
interest, and logL, is the log-likelihood of the intercept-only model.

What is the log-likelihood? The log-likelihood of a statistical model is a
function of the data collected and the parameters of the model; the
form of this model is assumed known.

It is a special function, the value of the log-likelihood function increases
as we reduce the difference between the data and our model for them
(we change the value of the log-likelihood function by varying the
parameters of the model).

The maximum log-likelihood occurs at those parameter values where
this difference is minimized.
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Philosophies for extension into mixed
models

R? based on the likelihood ratio test possesses many desirable
properties for a goodness-of-fit statistic
» produces the usual R? for ordinary regression (like others)

» since it is based on likelihoods, there is a direct relationship with
Kullback-Liebler distance, “information”, and information gain
IG = —log(1 — R% ) (note that IG is not a linear function of k% ;)
(see Kent (1983), Biometrika 70: 163—-174)

» it is easily calculated using output from mixed models software

R? examples

Ex. 1: RCBD + covariate (random coefficients, 3 treatments, 4 blocks,
2 obs/block-trt combination, 03 =4, 03 =1, 04,5, =0, 0% =1)

blk 1 blk 2 blk 3 blk 4
A|B B|C B|C B|A
ClA B|A AlC c|C
B|C A|C A|B A|B

R? examples

Ex. 1: RCBD + covariate (random coefficients, 3 treatments, 4 blocks,
2 obs/block-trt combination, 03 =4, 03 =1, 04,5, =0, 0% = 1)
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R? examples

R program used for simulating data and estimating the maximum log
likelihood (with nmle package by Bates and Pinheiro)

model parms log likelihood R2Z,. R%,
intercept only 2 -64.45 0 0
trt 4 -63.55 0.07 0.07
trt + cov (f) 5 -59.10 0.36 0.36
trt + blk (r) 5 -60.60 0.27 0.32
trt + blk (r) + cov (r) 7 -42.74 0.84 0.93

f = fixed

r = random
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Spatial exponential correlation

Ex. 2: p = exp(—d; ;/2), 0? = 1, level effect = 2, d = distance between

R? examples

Example 2: Semi-variograms
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R? examples Conclusi
p onclusions

model log likelihood  RZ
intercept only -495.94 0

level -389.68 0.51
level + corr. resid. -225.27 0.67

» there are various R?'s that can be developed for mixed models, all
produce the same value for ordinary regression

» an R? based on the likelihood ratio test is easy to calculate from
standard mixed models output and has a connection to

information theory

» examples were shown demonstrating increases in R when
adding random effects or correlated errors to the model
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